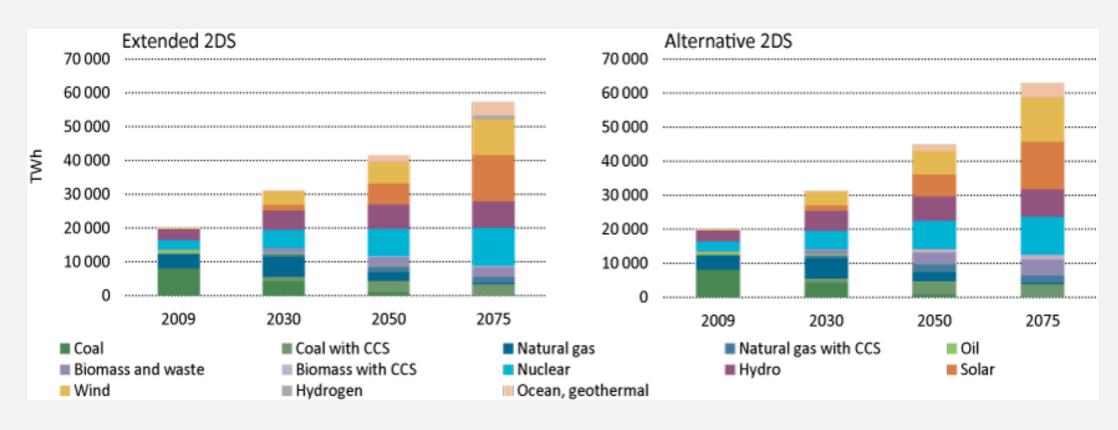
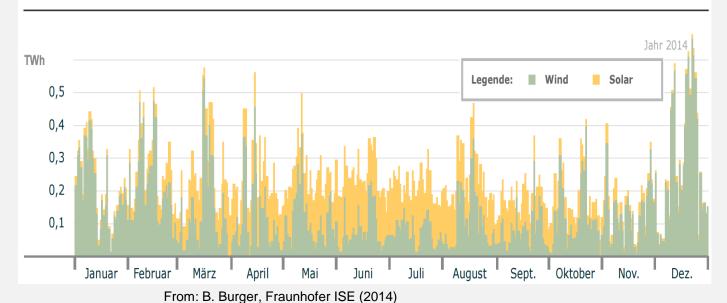


Towards a Sustainable Energy System

http://chem.ch.huji.ac.il/etgar/ lioz.etgar@mail.huji.ac.il





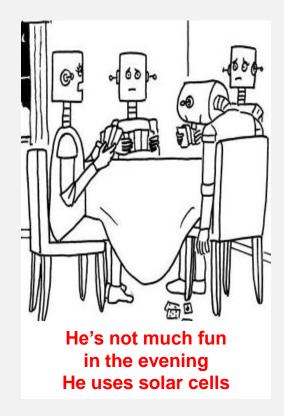
Solar energy is by far the largest energy resource on earth

Exploiting the Power of the Sun

Daily production of solar and wind in Germany

Batteries for short-term balancing

Fuel-based concepts are needed for longer-term storage

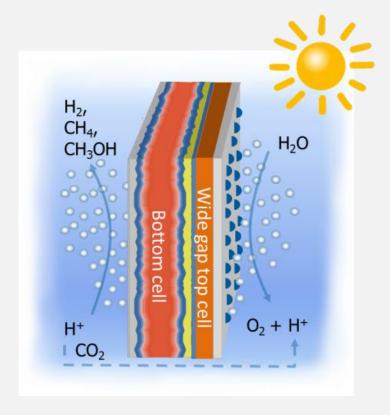


Photovoltaics

Thinking the Energy System

Common Challenges for PV & Solar Fuels

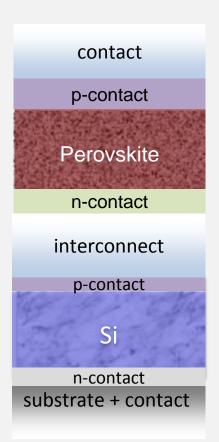
R&D needs for PV Technology (1)

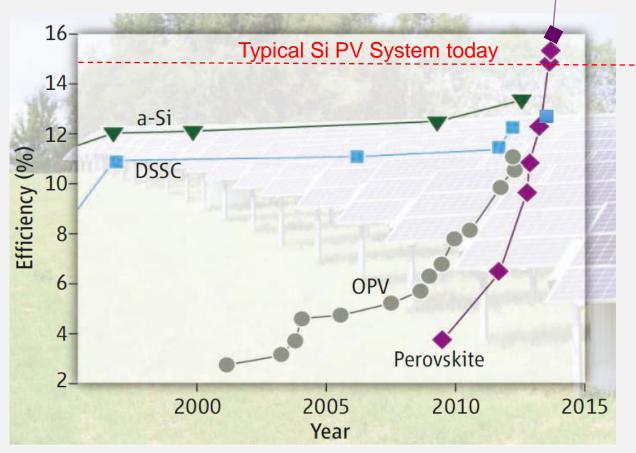

- Low-cost production processes
- Increased efficiencies
- Development and innovation by e.g. new materials
- Intelligent systems solutions

Research needs for Solar Fuels

- Earth-abundant catalysts
- Stable and efficient light absorbers
- Smart cell design by e.g. light management

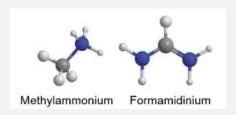
Approach:


Electricity for fuel generation by high-voltage multi-junction cells including novel widebandgap absorbers



Multijunction hybrid cells: going beyond 10% solar-to-H₂ efficiency and >25% photovoltaic efficiency, at a price we can afford

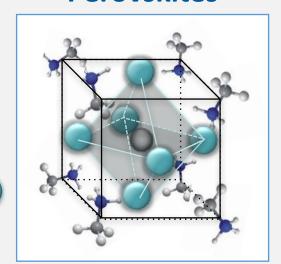
Today's Unique Opportunity (1) Overcoming Limits of Todays Technology


Evolution of halide perovskite solar cells

Perovskite/Si tandem cell opens up a path to efficiencies > 30%

Today's Unique Opportunity (2) & Challenges Halide Perovskite Semiconductors

Organo- Cs,


Perovskites

Metallic-

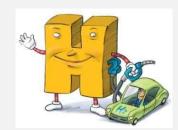
M = Pb, Sn 🔾

Halide-

H = Cl, Br, I

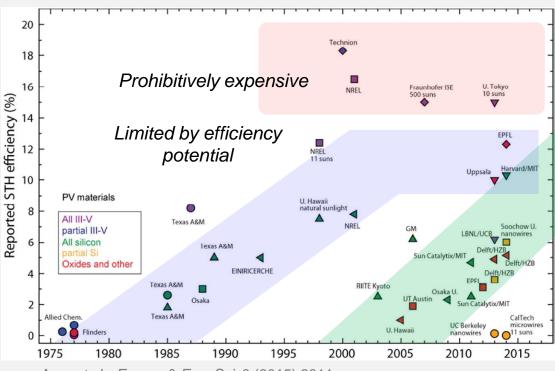
Low T processing

High quality semiconductor

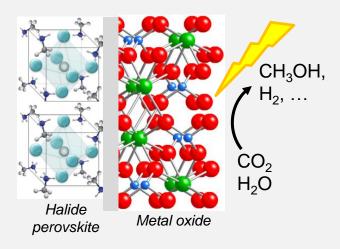

Chemical variability

- Critical Stability
- Best performance with Pb
- Interface control?

Solution requires:


In-depth understanding and control of materials – interfaces – devices!

Today's Unique Opportunity (3) & Challenges Solar Fuel Devices



Ager et al., Energy & Env. Sci. 8 (2015) 2811

Next-Generation Solar Fuel Devices Require:

- Discovery and optimization of new semiconductors
- Understanding of semiconductor / catalyst interfaces
- Strategies for managing photons, electrons, and ions

New wide-bandgap oxide semiconductors that are stable and efficient

Hybrid Tandem Concept for Solar Fuels

Example: BiVO₄

A new oxide semiconductor that now shows efficiencies close to 90% of theoretical value

Goals & Key Questions

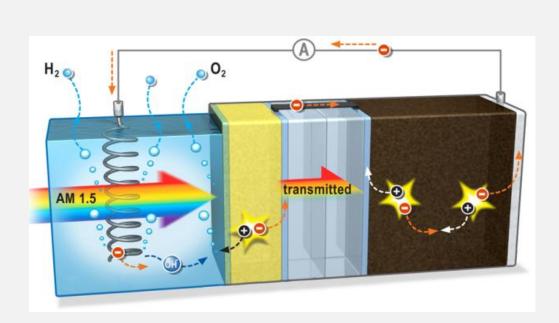
How we design novel, **more efficient** and **stable halide perovskite & metal oxide** light absorbers?

Can we **reduce efficiency losses** by **understanding** of physical and chemical processes at **interfaces**?

Can new large-bandgap **light absorbers** reach the required **solar-to-fuel efficiencies** and **chemical stabilities** needed for practical applications?

We already achieved...

Dense TiO₂


Prevoskite
TiO₂ mesoporous

FTO glass

➤ Voltage of 1.5V for single perovskite solar cell Metal contact

> Stable perovskites for high light intensity

Seizing the chance: Tackle the challenge towards highly efficient Solar Fuels

Breakthroughs with halide perovskites finally offer paths towards high-voltage, highly efficient, and affordable solar electricity and fuels

Scientific Challenge: Generation of electricity for fuels by high-voltage multi-junction cells that include novel wide-bandgap absorbers

⇒ key enablers for a sustainable energy future

High voltage and high efficiecny two dimensional perovskite

...Etgar. Et al. Advanced Functional Materials.2016

nanostructures: synthesis, properties and applications,

...Etgar. Et al. Advanced Functional Materials, 2016,

Inorganic and hybrid organo-metal perovskite

Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications

...Zaban et al. Acc.Chem. Res.2016

Vapor and healing treatment for $CH_3NH_3PbI_{3-}$ $_xCI_x$ films toward large-area perovskite solar cells

...Zaban et al. Nanoscale. 2016

Novel
High Quality
Highly Stable
Wide Gap
Semiconductors

לברע WEIZMANN Perovskites roll forward

Hodes, Cahen, Nat. Photon. 2016

Hybrid organic-inorganic perovskites

...Kronik, Hodes, Cahen, Nat. Mat. Rev. 2016 Omer Yaffe, WIS

Electrocatalysis (Menny Shalom, BGU),

Degradation of perovskites ... Visoly-Fischer, Etgar, Katz, J. Phys. Chem. Let. 2015, ChemSusCehm. 2016

Thank you

http://chem.ch.huji.ac.il/etgar/lioz.etgar@mail.huji.ac.il

