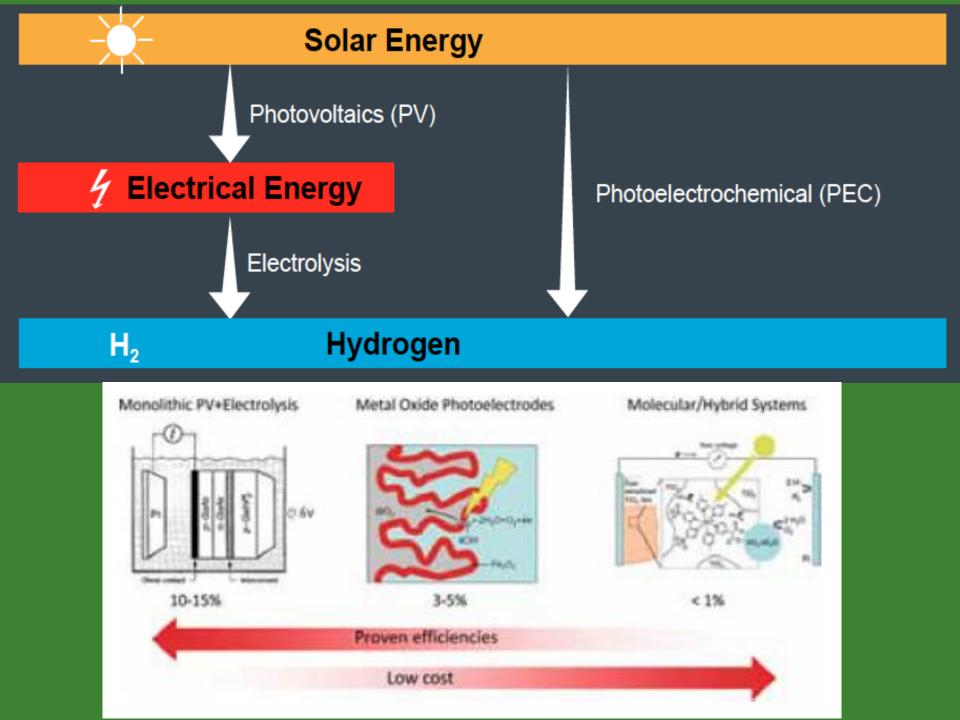
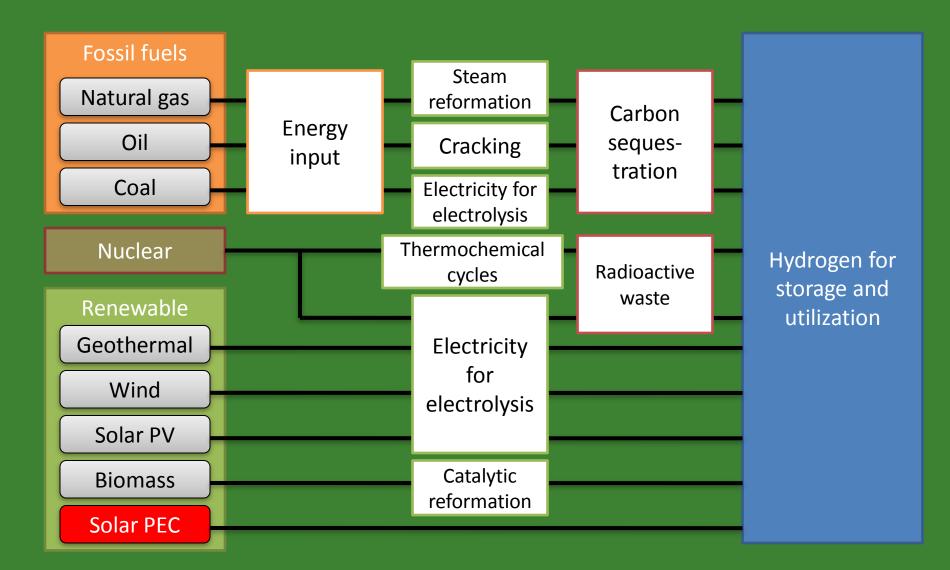

Energy beyond oil: Mesoscopic photosystems for the generation of fuels from sunlight


Fuel Choices Conference – Panel Discussion Tel Aviv Israel December 4, 2014 The long term future, where is the technology taking us ?

michael.graetzel @epfl.ch



Swiss Tech Convention Center in Lausanne with a glass façade made of dye sensitized solar cells

PEC (photo-electrochemistry) offers a direct path from solar energy to transportation fuels

Source: Toyota Motor Corporation

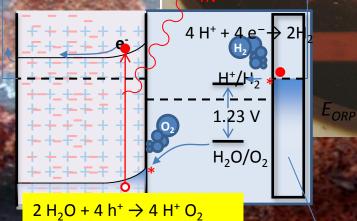
Our research has introduced mesoscopic structures for energy conversion. These systems are now applied in electrochemical devices for solar generation of chemical fuels, dye sensitized - and perovskite solar cells as well as lithium ions batteries.

ARTICLES

PUBLISHED ONLINE: 7 JULY 2013 | DOI: 10.1038/NMAT3684

mature

Identifying champion nanostructures for solar water-splitting


Scott C. Warren^{1*†}, Kislon Voïtchovsky², Hen Dotan³, Celine M. Leroy¹, Maurin Cornuz¹, Francesco Stellacci², Cécile Hébert⁴, Avner Rothschild³ and Michael Grätzel¹

$$\eta_{\rm coll} = (1 + (d/L_{\rm D})^2)^{-1}$$

$$\eta_{\text{coll}} = 1/(1 + \tau_{\text{trans}}/\tau_{\text{rec}})$$

The key advantage of mesoscopic over planar semiconductor architectures is that they can achieve near quantitative collection of the photo-generated charge carriers even for materials where the charge-carrier diffusion length is much shorter than the light absorption length. In photoelectrochemical cells the electrons and holes are used to generate hydrogen and oxygen from water,

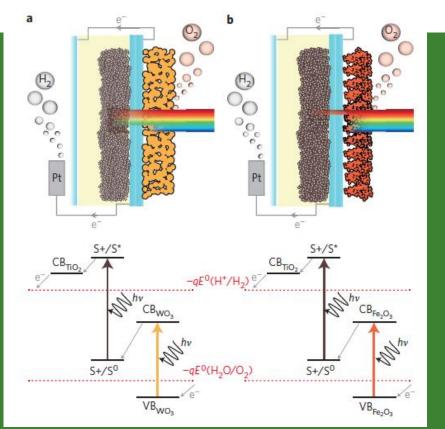
The power of the mesoscopic architecture; visible light induced oxygen evolution on Fe_2O_3 (iron oxide ,rust)

Net Reaction: $2 H_2O + hv \rightarrow 2H_2 + O_2$

5 mm

Rust is inactive !

nature photonics

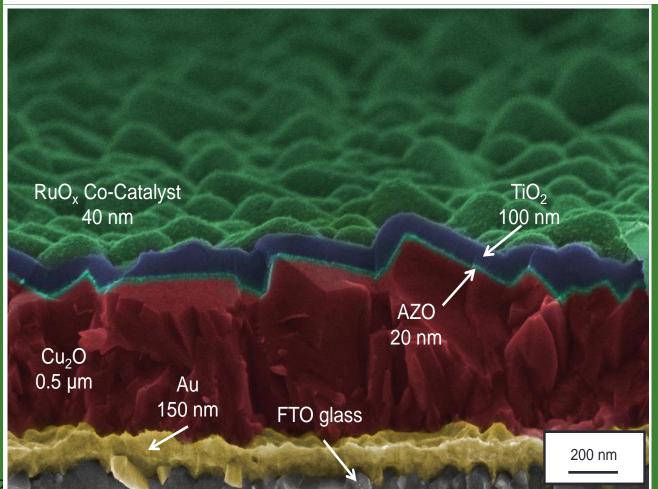

LETTERS

Highly efficient water splitting by a dual-absorber tandem cell

Jeremie Brillet¹, Jun-Ho Yum¹, Maurin Cornuz¹, Takashi Hisatomi¹, Renata Solarska², Jan Augustynski²,

Michael Graetzel¹ and Kevin Sivula^{1*}

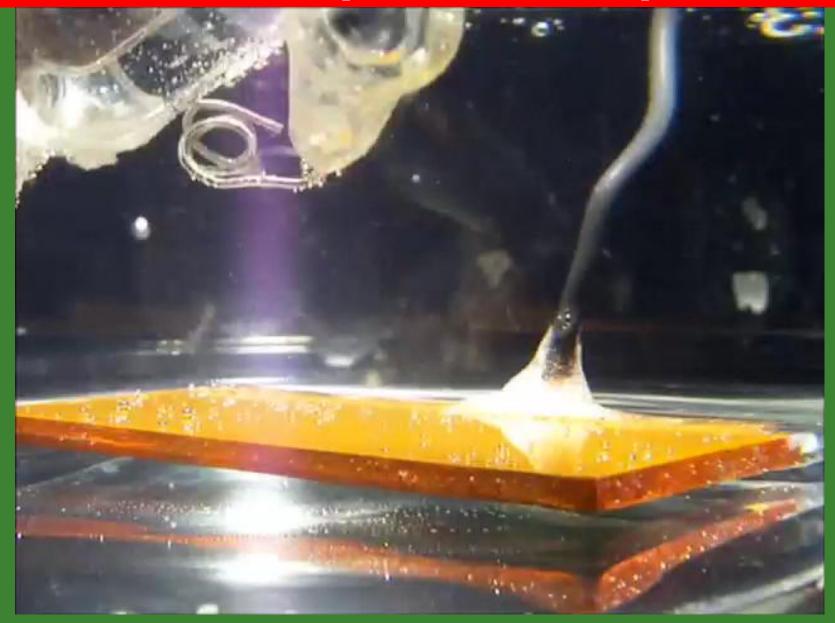
Photoelectrochemical water-splitting devices, which use solar energy to convert water into hydrogen and oxygen, have been investigated for decades. Multijunction designs are most efficient, as they can absorb enough solar energy and provide sufficient free energy for water cleavage. However, a balance exists between device complexity, cost and efficiency. Water splitters fabricated using triple-junction amorphous silicon^{1,2} or III-v³ semiconductors have demonstrated reasonable efficiencies. but at high cost and high device complexity. Simpler approaches using oxide-based semiconductors in a dual-absorber tandem approach^{4,5} have reported solar-to-hydrogen (STH) conversion efficiencies only up to 0.3% (ref. 4). Here, we present a device based on an oxide photoanode and a dye-sensitized solar cell, which performs unassisted water splitting with an efficiency of up to 3.1% STH. The design relies on carefully selected redox mediators for the dye-sensitized solar cell^{6,7} and surface passivation techniques⁸ and catalysts⁹ for the oxidebased photoanodes.



ARTICLES

PUBLISHED ONLINE: 8 MAY 2011 | DOI: 10.1038/NMAT3017

Highly active oxide photocathode for photoelectrochemical water reduction

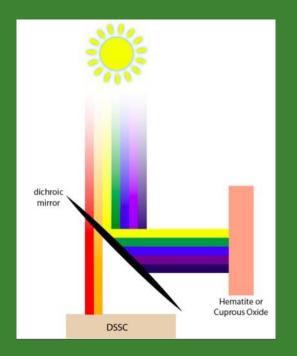

Adriana Paracchino¹, Vincent Laporte², Kevin Sivula¹, Michael Grätzel¹ and Elijah Thimsen^{1*†}

Build-in Cu_2O/ZnO (AZO) p/n junction and TiO₂ overlayer protect the Cu_2O film Against photo-corrosion

nature materials

The Holy Grail of photocatalysis: solar splitting of water into hydrogen and oxygen on Cu₂O films protected by TiO₂

Science **345**, 1593 (2014)


WATER SPLITTING

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts

Jingshan Luo,^{1,2} Jeong-Hyeok Im,^{1,3} Matthew T. Mayer,¹ Marcel Schreier,¹ Mohammad Khaja Nazeeruddin,¹ Nam-Gyu Park,³ S. David Tilley,¹ Hong Jin Fan,² Michael Grätzel¹*

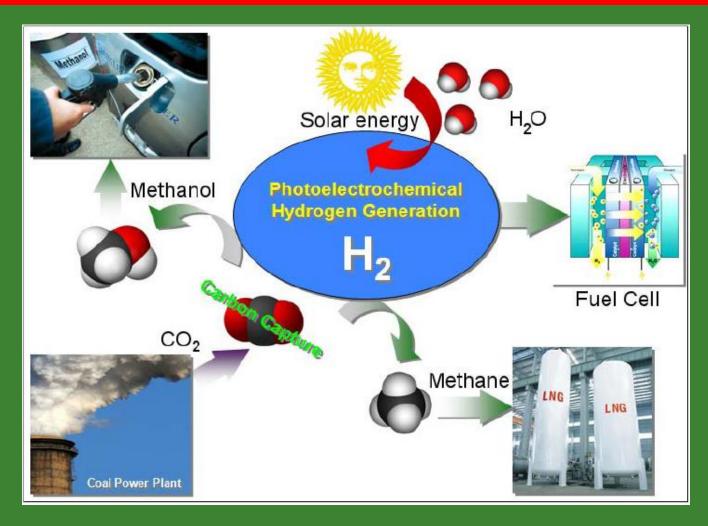
Present status of research and development

- Large electrode tandem (100 cm²)
- 10% unassisted water splitting in AM1.5 sunlight.

Future practical implementation: PECDEMO -EU project sunlight to hydrogen

Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

- Stand-alone hybrid PEC-PV devices will be constructed and tested for performance and stability,
- fabrication of large scale demonstration modules that will be tested in the field under real-world conditions.
- Price target for hydrogen: 5€/kg

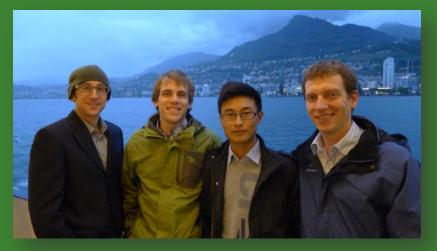


Prof. Roel van de Krol

Participant no.	Participant organisation name	Country
1	Helmholtz-Zentrum Berlin für Materialien und Energie	Germany
(Coordinator)	GmbH	
	Prof. Roel van de Krol	
2	Ecole Polytechnique Fédérale de Lausanne	Switzerland
	Prof. Michael Grätzel	
3	Technion – Israel Institute of Technology	Israel
	Prof. Avner Rothschild	
4	Deutsches Zentrum für Luft - und Raumfahrt	Germany
	Dr. Christian Jung	-
	Dr. Martin Roeb	
5	Universidade do Porto	Portugal
	Prof. Adélio Mendes	
6	Evonik Industries AG	Germany
	Dr. Matthias Blug	
7	Solaronix SA	Switzerland
	Dr. Toby Meyer	
		•

H₂ is a key future energy vector and fuel

- Provides environmental, economic and national security
- Can be easily converted to methane or methanol
- Price target for renewable hydrogen 5 €/kg
- By 2050, H₂ is expected to comprise 50% of transportation fuels.



LPI-SolarFuels group members

Ludmilla Steier	Fe ₂ O ₃ photo-anodes for solar water splitting
David Tilley	Group leader, now Professor at the University of Zurich
Marcel Schreier	CO ₂ reduction on photocathodes, gas chromatography
Jingshan Luo	copper oxide-and CIGS based photocathodes, tandems, earth-
	abundant electrocatalysts
Matt Mayer	present solar fuels group leader, photocathodes, metal oxides,
	mesocopic photoelectrodes
Min-Kyu Son	Cu ₂ O tandems, scale-up of water splitting systems

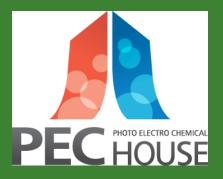
Cooperations with Israeli groups

Academic

- Professor Efrat Lifshitz Technion Haifa
- Professor Avner Rothschild Technion Haifa
- Dr. Hen Dotan Technion Haifa
- Professor Doron Aurbach Bar-Ilan University
- Professor Ariel Zaban Bar-Ilan University
- Professor Lioz Etgar Hebrew University
- Professor Gary Hodes Weizman Institute
- Professor David Cahen Weizman Institute

Industrial

3GSolar Jerusalem


We are grateful for Swiss and European public funding

0

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

MARIE CURIE ACTIONS

We thank our corporate sponsors

