Fuel Choices Initiative 2014 Tel Aviv, Israel December 3 - 4, 2014

A Solution to Energy and Global Warming: Electrification of Ground Transportation Systems Based on OLEV and SMFIR

Nam Pyo Suh Cross Professor Emeritus, MIT President (2006-2013), KAIST

Thank you for the invitation to speak.

How can we reduce CO₂ emission to prevent Global Warming predicted by IPCC?

 Reduce the consumption of fossil fuels such as coal, natural gas, and oil.

How?

Two Major Sources of CO₂

- Ground transportation systems (cars, buses, etc.)
 - Electric Power Plants, especially those that use coal

Solutions:

 Electrification of the Ground Transportation Systems (EGTS)

Green electric power plants
 -- no emission of CO₂

Expected Results from EGTS

- 30% reduction in CO₂ emission
- 30 to 50% reduction in oil consumption

Current Energy Usage in Transportation

- In 2013, the worldwide usage of petroleum = 92 million barrels / day
- IC engines use ~ 70% of world's oil
- Korea's consumption of petroleum = $\sim 2.4\%$
- Korea's consumption of oil for transportation = 68%
- The U.S. consumption = $\sim 19\%$
- U.S. consumption of oil for transportation = 71%

Current CO₂ Emission in the U.S. Source: U.S. EPA(2012)

U.S. Petroleum Consumption by Sector (2010) Source: U.S. Department of Energy, "Total Energy: Monthly Energy Review. March 28, 2012.

South Korea total primary energy consumption by fuel type, 2012

Two Issues in Internal Combustion (IC) Engines

- CO₂ emission
- Low fuel efficiency (well-to-wheel) of IC engines

– In comparison to electrical motors

We can save 30 to 50% of oil by replacing IC engines with electric drives

Most Transportation Systems Use IC Engines!

- IC engine is the primary power plant in automobiles
- IC engines have low "well-to-wheel" efficiency: 17 to 20%.
- 62% chemical energy lost in IC engines.
- 32% of CO_2 emission is due to IC engines.
- 25% of energy is exhausted as high temperature gas in IC engines.

Shortcomings of All Battery-Powered Electric Vehicles •Use of a Large Bank of Batteries Expensive •Heavy •Bulky •Large Long charging times •Efficiencies of batteries: 80% to 90% Safety Finite supply of lithium

Our Solution: On-Line Electric Vehicle (OLEV)

- Wireless supply of electric power to moving vehicle from underground power supply system
- Small battery on board for autonomous mobility on roads without the underground power supply
 - Only 5 to 20% of the roadways need to have the underground power supply system
 - Cheaper than diesel or natural gas buses (much lower operating cost)

Basic Technologies

- SMFIR (Shaped Magnetic Field in Resonance)
 - Wireless transmission of electric power from underground power supply station to the electric vehicle
- OLEV (On-Line Electric Vehicle)
 - EV that propels with the electric power received from the underground power supply wirelessly while in motion or stationary

Basic Wireless Power Transfer Technology SMFIR (Shaped Magnetic Field in Resonance)

SMFIR (Shaped Magnetic Field in Resonance) OLEV (On-Line Electric Vehicle)

Concept & Core Technology - Core Technology -

KAIST newly invented and developed the **SMFIR** technology, which enables the enough power capacity, businesscompetitive transmission efficiency with the sufficient air gap for power transmission while the vehicle is in operation.

Concept of OLEV

X KAIST is demonstrating the core technology by using both power supply system under ground and power collection system attached to bus.

Commercial Operation of OLEV in Korea since 2011

• Industrial City Gumi

Seoul Grand Park

• KAIST campus

Operating In Gumi City, an Industrial Center in Korea (August 6, 2013)

Electrical Drives are much more efficient than piston-type IC engines!

 Electric drives are ~ 60% more efficient than piston-type IC engines, (Rao, 2012)

 Other estimates: Electric drives are ~ 40% to 60% more efficient

OLEV was Selected as One of the 10 Emerging Technologies of the World

(World Economic Forum of Davos, 2013)

- In Korea
 - Installed in Gumi City, one of the major industrial city
 - Seoul Grand Park
 - KAIST Campus
 - World Expo (2012)
- In the U.S.
 - Negotiating with a number of cities, airport, campus
 - Needs more activities
- In Europe and Other Asian Countries
 - No major activities

Electric Drive vs IC Engines

- Energy conversion efficiency of electric power plants: 40% (coal), up to 60% (combined cycle)
- Efficiency of electric motors: >90%
- Electric power transmission line loss: about 8%
- SMFIR loss: 20%
- Well-to-wheel efficiency of EV: 27%
- Well-to-wheel efficiency of electric drives is 35% to 50% greater than vehicles with IC engines
- [Rao's estimation: 60% greater than IC engines]

Electricity Cost vs CNG Cost (Gumi City) (Source: Professor D. H. Cho of KAIST)

- 35 km round trip
- CNG cost = \$20.58 per run
- Electricity cost = \$3.92 per run
- 10-year Fuel Cost
- CNG cost = \$4.5 million
- Electricity cost = \$860,000

Projected Cost of 10-Year Operation of Buses in Gumi

(Source: Professor D. H. Cho of KAIST) (in \$1,000.00; 35 km/run) Note: The cost OLEV buses are high due to low initial production volume.

	EGTS with Gov.Subs.	CNG with Gov.Subs	EGTS w/o Gov.Subs.	CNG w/o Gov.Subs.
Bus (6 buses)	\$ 900	\$ 600	\$2,700	\$1,200
Energy cost (10 round trips/day/bus)	\$860	\$4,500	\$ 860	\$4,500
Charging infrastructure	\$ 900		\$ 900	
Carbon tax		\$ 401		\$ 401
Total Cost	\$2,660 (5,060) inc bat cost	\$5,501	\$4,460	\$6,101

Summary

- EGTS will reduce the overall consumption of energy.
- EGTS will clean up the environment.
- EGTS will bring in a new era of technology innovation.
- EGTS will spur economic growth.
- Our posterity will live in a cleaner environment.

Thank you.